
11. NUMERICAL TECHNIQUES 

Abstract — This paper provides a unified theory of the 

error correction methods for acceleration of convergence in 

linear solvers used in computational electromagnetism, which 

include the multigrid and deflation methods, explicit and 

implicit error correction methods as well as the AV method for 

eddy current analysis. It is shown that in all these methods the 

error correction with projection matrices play a crucial role, 

which are constructed so that their null spaces include the 

slowly converging numerical errors.  

I. INTRODUCTION 

The multigrid method decomposes the unknowns of 

iterative linear solvers such as Jacobi and Gauss-Seidel 

methods into the fast and slowly converging components by 

use of the restriction-prolongation matrix [1]. The former 

components with oscillating profiles can be obtained by 

solving the matrix equations with relatively small numbers 

of iteration. This solution is then corrected with the slowly 

converging components determined by the solving the 

residual equation. The deflation method, which has recently 

been applied to diffusion and magnetostatic problems [2, 3] 

for acceleration of linear solution, also carries out the error 

correction on the basis of the decomposition where the 

eigenvectors corresponding to the small eigenvalues of the 

system matrix stand for the slowly converging components. 

In this paper, the methods which are based on the 

correction to eliminate the slowly converging errors, as in 

the multigrid and deflation methods, are called the error 

correction (EC) methods, while the multigrid method, which 

performs multi-level corrections, belongs also to so called 

the subspace correction method performing the subspace 

decomposition in each of which decomposed errors are 

corrected [4]. 

In the explicit and implicit error correction (EEC and 

IEC) methods, which have been inspired from the multigrid 

method, the error correction is not performed by use of the 

restriction-prolongation matrix but by the matrices which 

include vectors by whose linear combination the slowly 

converging components can be expressed [5]. The similarity 

between the IEC and the AV (or A-phi) methods has been 

pointed out in [5], which simultaneously solve the original 

equation and equation for the error correction. Moreover, 

recently, it has been shown that the convergence in time-

periodic electromagnetic fields can be drastically improved 

by time-periodic error correction (TP-EEC) method [6]. 

It has been shown that these EC methods are based on 

the common mathematical principle used in the matrix 

deflation [7]. However, it remains unclear why the EC 

methods work well although the correction matrices are not 

composed of the eigenvectors of small eigenvalues. Indeed, 

the TP-EEC method solves non-symmetric matrix whose 

eigenvectors are, in general, complex. For this reason, we 

need stronger mathematical framework to explain why the 

EC methods perform convergence acceleration with general 

correction matrices. This paper will present a unified 

formulation of the EC methods to clarify their common 

mathematical principle. It will be shown that the projection 

matrix, constructed from the correction matrix, plays a 

crucial role in the acceleration.  

II. FORMULATION OF ERROR CORRECTION 

Let us consider a system of linear equations 

,A bx =                                       (1) 

where 
nn×

ℜ∈A  is a symmetric positive definite matrix. 

(The last condition can be relaxed to be positive-semi 

definite with some modification in the following 

formulation.) The approximate solution x~ to (1) is then 

compensated as 

pxx W~~
new +=                              (2) 

where W=[w1, w2,...,wk], wi, i=1, 2, ..., k, nk <<  are 

independent vectors and p denotes a coefficient vector. Now 

the residual r for new
~x  given by 

pxbr AW~A −−=                             (3) 

is enforced to be orthogonal to the space spanned by wi to 

have the equation for p as 

)~A(WAWW tt
xbp −=                  (4) 

Then the EC is made as follows: 

)~A(AW)W(W~~ 1t
new xbxx −+=

−
            (5) 

By subtracting the exact solution x satisfying (1) from both 

sides of (5), we have 

,Pnew ee =                                   (6) 

where e denotes numerical error and P is defined by 

A,WAW)W(WIP t1t −
−=                    (7) 

which is a projection matrix satisfying P
2
=P. Moreover, it 

can be shown that e can be decomposed as 

sf eee +=                                (8) 

where 

),AW(Ker t
f ∈e    ).W(Ranges ∈e           (9) 

By definition, each component satisfies 0P s =e , 

ffP ee = . Hence, the EC eliminates es while ef remains 

unchanged, the latter of which is effectively reduced 

through the numerical solution of (1). The vectors wi are 

chosen so that they express the slowly convergence 

components, that is, the reduction rate in ef is comparatively 

slow, whereas ef  reduces to zero after small number of 
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iterations. Because the EC selectively eliminates es, the 

convergence is effectively accelerated. 

III. UNIFIED DERIVATION OF RELAVANT METHODS 

It can be found that the following methods are based on 

the EC given by (6) with differences in the choice of W. 

TABLE I summarizes the choice of W for each method. 

A. Multigrid Method 

In this method, es corresponds to the error component 

with smooth profiles which cannot be effectively reduced by, 

e.g. the Gauss-Seidel and CG methods. The slow 

components are shown to be in the range of the restriction 

matrix R mapping vectors in fine grid to those in coarse grid. 

In the multigrid, es  is eliminated by (6) where W=R. 

B. Deflation Method 

The deflation method is based on the decomposition of 

the unknown in the form xxx )PI(P −+= , where the 

first and second terms represent fast and slowly converging 

components, respectively. The latter can be obtained from 

,WAW)W(W)PI( t1t
bx

−
=−                (10) 

while the former is obtained by solving 

,PAP t
bx =                               (11) 

where the commutative property APAP t
=  is used to 

derive (11). In the typical deflation method, W is composed 

of eigenvectors corresponding to the small eigenvalues of A. 

In this case, AP in (11) is proved to have better conditioning 

than A [2, 7]. Moreover, by substituting (10) into the 

second term of the decomposition, we have the same form 

as (5). 

C. AV method for eddy current analysis 

The A method, widely used in finite element analysis of 

eddy current problems, which solves (1) with 

S,jNRRA t
ω+=                       (12) 

has poor convergence especially when the frequency ω  is 

relatively low, where R is the discrete counterpart of the rot 

operator, N and S are matrices depending on permeability 

and conductivity [8]. Moreover, the range of G, the discrete 

counterpart of the grad operator, which satisfies RG=0, 

represents the slowly converging components. To improve 

the convergence, the error correction pxx G~
+=  is 

performed, the second term of which is obtained by solving 

the correction equation as 

).Sj(GSGGj tt
xbp ω−=ω                     (13) 

In the AV method, (13) is simultaneously solved with 

bx =~A  that is 

.SGjS)jNR(R t
bpx =ω+ω+               (14) 

D. EEC and IEC, TP-EEC 

In the EEC method, the restriction matrix R used in the 

multigrid method is replaced by a matrix W whose column 

vectors wi represent slowly converging components. In this 

method, pbx AW~A −=  and (4) are alternatively solved. 

In each step of this process, the error correction (6) is 

effectively performed. The IEC method simultaneously 

solves these two equations for the EEC like the AV method. 

It is shown that the convergence in the ICCG applied to 

finite element analysis of magnetostatic problems with thin 

elements has been drastically improved when wi represent 

spatially smooth errors [9]. 

In TP-EEC method [6], the EEC method has been 

extended to time-periodic eddy current problems which 

have long time constant compared to the excitation period. 

To shorten the computational time until the steady state, the 

temporally smooth components are decomposed from 

periodic ones. Then the smooth components are determined 

by solving (4) for the EC (6). 

TABLE I 

Typical choices of W 

Methods Typical choice of W=[w1, w2, …,wk] 

Multigrid Restriction matrix 

Deflation 
wi is eigenvector of small eigenvalue of 

A 

AV for eddy currents Gradient matrix G 

EEC and IEC wi expresses spatially smooth error 

TP-EEC wi expresses temporally smooth error 

IV. CONCLUSIONS 

It has been shown that the decomposition (2) and EC (6) 

are common key techniques in various acceleration methods. 

In the long version, the effect of the EC will be 

mathematically and numerically discussed. Moreover, 

effective method for the choice of W will also be discussed. 
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